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Abstract

A multi-resolution analysis (MRA) is applied to an uncertainty propagation scheme based on a generalized poly-

nomial chaos (PC) representation. The MRA relies on an orthogonal projection of uncertain data and solution vari-

ables onto a multi-wavelet basis, consisting of compact piecewise-smooth polynomial functions. The coefficients of the

expansion are computed through a Galerkin procedure. The MRA scheme is applied to the simulation of the Lorenz

system having a single random parameter. The convergence of the solution with respect to the resolution level and

expansion order is investigated. In particular, results are compared to two Monte-Carlo sampling strategies, demon-

strating the superiority of the MRA. For more complex problems, however, the MRA approach may require excessive

CPU times. Adaptive methods are consequently developed in order to overcome this drawback. Two approaches are

explored: the first is based on adaptive refinement of the multi-wavelet basis, while the second is based on adaptive

block-partitioning of the space of random variables. Computational tests indicate that the latter approach is better

suited for large problems, leading to a more efficient, flexible and parallelizable scheme.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Spectral representation schemes based on the polynomial chaos (PC) decomposition [5,30] provide an

efficient alternative to Monte-Carlo methods [6] for uncertainty propagation and quantification. Following

the work of Ghanem and Spanos [14], this approach has been applied to different fields of engineering
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sciences. Recently, the development of complex physical and numerical models and the availability of large-

scale parallel platforms have increased the need for efficient uncertainty quantification schemes to be used

for validation, design, and decision making analysis. For instance, spectral representations have been
applied to the analysis of stochastic elastic structures [14,23]; to flow through porous media [12,13], the

Navier–Stokes equations [18,20], thermal engineering [16], combustion and reacting flows [26], and elec-

trochemical microfluidic applications [10]. Although successful for solving many problems, the PC repre-

sentations have some limitations in particular when the solutions are complex [7].

One specific limitation, considered in a previous effort [19], appears when the solutions are smooth, but

exhibit sharp variation or even discontinuity with respect to random data. Such a situation occurs for

instance when one or more of the random parameters is in the neighborhood of a critical point. In [19], it

was shown that the classical Wiener–Hermite (WHe) spectral expansions, or generalized forms based on
global smooth polynomials such as Wiener–Legendre (WLe), may fail to describe steep or discontinuous

dependence of the solution on a random parameter. Specifically, aliasing errors and Gibbs-type phenomena

make such expansions impractical. In [19], a wavelet-based PC expansion was developed in order to

overcome this limitation. The expansion, which combined concepts of generalized PC expansions [31–33]

and of using of piecewise functions in stochastic Galerkin methods [9], relied on the decomposition of the

random data and solution process into Haar wavelets (see, e.g., [8,25,28,29]), allowing for localized de-

composition and resulting in a more robust method. Numerical tests conducted on problems involving

critical random parameters demonstrated the robustness of the Wiener–Haar (WHa) scheme, but showed
that for smooth problems the latter exhibits a lower rate of convergence than that observed for spectral

approximations. The present work generalizes the methodology introduced in [19], to arbitrary polynomial

order expansions according to the framework proposed by Alpert [3], the WHa expansion corresponding to

the zero-order case. The goal of the present generalization is to explore the possibility of combining the

advantages of a higher-order convergence rate resulting from higher-order polynomial expansion (p-con-
vergence), and of the robustness of local decompositions. To this end, a MRA scheme is constructed, al-

lowing for refinement of the expansion by increasing the number of resolution levels (h-refinement) and/or

the polynomial order (p-refinement). The present concept of h–p refinement resembles but differs from that
introduced in [4], where a stochastic Galerkin method combining spatial (h) refinement with order (p)
refinement in the space of random data is reported. In the present case, finite difference methods are used

for spatial discretization, and both the h- and p-refinements characterize the multi-wavelet discretization of

the space of random data.

The paper is organized as follows. In Section 2, a brief outline is provided of the PC representation. The

construction of the MRA scheme is then described in Section 3. In Section 4, the resulting scheme is tested

based on application to the Lorenz system having a single random parameter. In particular, the conver-

gence of the solution is analyzed with respect to the number of refinement levels and the expansion order,
and the convergence rate of the MRA scheme is also contrasted with that of two Monte-Carlo (MC)

sampling strategies. The results underscore the importance of seeking the right balance between accuracy,

computational cost, and complexity. They also motivate the development of adaptive strategies that may be

ideally suited for larger problems. Initial steps in the latter direction are taken in Section 5, which describes

the construction of an adaptive multi-wavelet expansion scheme and its application to a critical Rayleigh–

B�enard problem [19]. An alternative approach is considered in Section 5.2, where a block-partioning

strategy is developed and tested using a surface reaction model [22] with multiple random parameters.

Major conclusions are summarized in Section 6.
2. Spectral stochastic representation

We consider the following generic equation governing a stochastic process PðhÞ:
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OðPðhÞ; hÞ ¼ 0; ð1Þ

where O is a non-linear operator and h is random coefficient vector. The spectral stochastic representation
considered here relies on an orthogonal Fourier-like decomposition of the solution process according to:

PðhÞ ¼
X
i

PiWiðnðhÞÞ; ð2Þ

where the Pi�s are (yet-to-be-determined) spectral coefficients, and the fWi; i ¼ 0; . . . ;1g denote the basis
functions. The expansion (2) is an orthogonal basis function representation of P. This approach has lead to

the concepts of homogeneous chaos and polynomial chaos (PC) expansions [5,14,30] when n is a Gaussian

vector with independent components. It can also be extended to non-Gaussian measures [11,31]. To sim-
plify the notation, we shall hereafter drop the dependence on h, and write PðnÞ instead of PðhÞ or PðnðhÞÞ.
Due to the orthogonality of the basis functions, that is hWiWji ¼ 0 for i 6¼ j, the spectral coefficients satisfy:

Pi ¼
hPWii
hWiWii

: ð3Þ

In order to determine the solution P it is sufficient to determine the spectral coefficients, Pi.

Several approaches can be used to determine the Pi�s. A simple approach is to use Monte-Carlo sam-

pling (e.g. [26]) or alternatively rely on quadrature formulae (e.g. [20]). In both cases, the problem is re-

duced to repeated solutions of a deterministic problem corresponding to different realizations of n. The

ensemble of realizations is then used to reconstruct the spectral coefficients. Thus, we refer to this approach

as a non-intrusive spectral projection (NISP) because it enables immediate application of a deterministic

solution scheme.
An alternative to MC and quadrature schemes is the Galerkin approach. In the latter case, the expansion

(2) is substituted into the governing equation (1) and the orthogonal projections onto the basis functions

are formed, resulting in the following system for the basis function coefficients:

O
X
i

PiWiðnÞ; n
 !

;Wj

* +
¼ 0 8j: ð4Þ

Below, we shall focus exclusively on combining the Galerkin approach with a multi-wavelet (MW) basis

function expansion.
3. Multi-resolution analysis and multi-wavelet basis

As mentioned earlier, if PðnÞ exhibits a fast or discontinuous dependence on the random data, a large

expansion order No may be necessary when using an orthogonal basis of smooth, global polynomials. In
many situations, this may render such classical expansions impractical. In this section, an alternative

representation of PðnÞ is introduced based on a multi-wavelet expansion. To simplify the presentation, we

shall first focus on the case of a single uncertain parameter, n; generalization to the multi-dimensional case

is then addressed in Section 3.4.
3.1. Change of variable

Let pðgÞ denote the cumulative distribution function, giving the probability that n6 g. As in [19], we
assume that pðgÞ is a continuous, monotically increasing function g over the interval ða; bÞ,



O.P. Le Mâıtre et al. / Journal of Computational Physics 197 (2004) 502–531 505
�16 a < b61, and that pðaÞ ¼ 0 and pðbÞ ¼ 1. Based on the assumed properties of pðgÞ, it follows that
for all r 2 ½0; 1� there is a unique g 2 ½a; b� such that pðgÞ ¼ r. In addition, if x is a uniformly distributed

random variable on ½0; 1�, then p�1ðxÞ is a random variable on ða; bÞ having the same distribution as n [15].
Consequently, instead of expanding the random process in terms of n, we alternatively develop a repre-

sentation with respect to x.
3.2. Multi-resolution analysis

In this section, we recall some properties of the multi-wavelet bases introduced by Alpert [3] (see also [2]).

The application to the representation of random processes is considered in Section 3.3.
3.2.1. Vector spaces

For No ¼ 0; 1; . . . and k ¼ 0; 1; 2; . . . ; we define the space VNo

k of piecewise-continuous polynomials,

according to:

VNo

k � f : the restriction of f to the interval ð2�kl; 2�kðlþ 1ÞÞ
�
is a polynomial of degree6No; for l ¼ 0; . . . ; 2k � 1g; ð5Þ
VNo

k � f vanishes outside the interval ½0; 1�f g: ð6Þ

Thus, VNo

k has dimension ðNo þ 1Þð2kÞ and VNo

0 � VNo

1 � � � � � VNo

k � � � �. Denoting VNo the union all of
spaces VNo

k , VNo ¼
S

kP 0V
No

k , [3], we remark that VNo is dense in L2ð½0; 1�Þ with respect to the norm

kf k ¼ hf ; f i1=2 where

hf ; gi ¼
Z 1

0

f ðxÞgðxÞdx: ð7Þ

The MW subspace WNo

k , k ¼ 0; 1; 2; . . . is defined as the orthogonal complement of VNo

k in VNo

kþ1; we write

VNo

k �WNo

k ¼ VNo

kþ1; WNo

k ? VNo

k : ð8Þ

From this construction, we have

VNo

0 �kP 0 W
No

k ¼ L2ð½0; 1�Þ: ð9Þ
3.2.2. Multi-wavelet basis

An orthonormal basis, w0;w1; . . . ;wNo

� �
, of WNo

0 is introduced. The wi�s are piecewise polynomial

functions of degree less than or equal to No. From the orthonormality condition, we have

hwiðxÞ;wjðxÞi ¼ dij: ð10Þ

Since WNo

0 ? VNo

0 , the first No þ 1 moments of the wi vanish, i.e.,

wj; x
i

� �
¼ 0; 06 i; j6No: ð11Þ

Eqs. (10) and (11) result in a system of polynomial equations whose solution yields the ðNo þ 1Þ wi functions

(see Appendix A).

The space WNo

k , whose dimension is ðNo þ 1Þð2kÞ, is spanned by the multi-wavelets, wk
jl, which are

translated and dilated versions of the wi�s. The wk
jl are given by
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wk
jlðxÞ ¼ 2k=2wjð2kx� lÞ; j ¼ 0; . . . ;No and l ¼ 0; . . . ; 2k � 1 ð12Þ

and their support is Suppðwk
jlÞ ¼ ½2�kl; 2�kðlþ 1Þ�. Due to the orthonormality of the wi�s, we have

wk
il;w

k0

jm

D E
¼ dijdlmdkk0 : ð13Þ

A basis f/0; . . . ;/k�1g for Vk
0 is also constructed. Rescaled Legendre polynomials are used for this purpose.

Letting Lei denote the Legendre polynomial [1] of degree i, defined over ½�1; 1�, we set:

/iðxÞ ¼
Leið2x� 1Þ

Li
; i ¼ 0; 1; . . . ;No; ð14Þ

where Li is a normalization factor selected such that

h/iðxÞ;/jðxÞi ¼ dij for i; j ¼ 0; . . . ;No: ð15Þ

The space VNo

k , whose dimension is 2kðNo þ 1Þ, is spanned by the polynomials /k
il,

/k
ilðxÞ ¼ 2k=2/ið2kx� lÞ; i ¼ 0; . . . ;No and l ¼ 0; . . . ; 2k � 1: ð16Þ

which are translated and dilated versions of the /i�s.

3.2.3. MW expansion

A function f ðxÞ 2 L2ð½0; 1�Þ can be arbitrarily well approximated using the MRA scheme constructed

above. We denote by f No ;Nr the projection of f on VNo

Nr
; we have

f No;Nr � PNo

Nr
½f � ¼

X2Nr�1
l¼0

XNo

i¼0
/Nr

il ðxÞ; f ðxÞ
� �

/Nr

il ðxÞ ¼
X2Nr�1
l¼0

XNo

i¼0
f
Nr

il /
Nr

il ðxÞ: ð17Þ

An alternative expression for f No;Nr , valid for all Nr P 1, in terms of multi-wavelets is:

f No;NrðxÞ � PNo

0 f ðxÞ½ � þ
XNr�1

k¼0

X2k�1
l¼0

XNo

i¼0
df k

ilw
k
ilðxÞ

 !
: ð18Þ

The MW coefficients df k
il appearing in Eq. (18) are given by

df k
il ¼ PNo

kþ1 f½ �
��

� PNo

k f½ �
�
;wk

il

�
: ð19Þ

Denoting by dNo ;Nr
the L2-norm of the approximation error of f on VNo

Nr
, dNo;Nr

� hf � f No ;Nr ; f � f No;Nri,
convergence is characterized by the decay of d with increasing polynomial order No (p convergence) or with

increasing resolution levels Nr (h convergence).
3.3. Expansion of the random process

Consider a random process PðnðhÞÞ, where nðhÞ is a random variable satisfying the assumption of

Section 3.1. Further, we assume that PðnÞ is a second-order process, i.e.,Z b

a
PðnÞ2pdfðnÞdn <1: ð20Þ

Using the change of variables introduced in Section 3.1, we express PðnÞ in terms of x ¼ pðnÞ as:
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PðnÞ ¼ Pðp�1ðxÞÞ ¼ ~PðxÞ: ð21Þ

Introducing this change of variable in Eq. (20) givesZ b

a
PðnÞ2pdfðnÞdn ¼

Z 1

0

~PðxÞ2 dx ¼ h ~P; ~Pi <1; ð22Þ

showing that ~PðxÞ 2 L2ð½0; 1�Þ. Thus, ~PðxÞ can be expanded according to Eq. (18).

Let us denote by n the set of index integers k concatenating the scale index k, support index l and MW

index i:

n � k : k
�

¼ ðNo þ 1Þð2k þ l� 1Þ þ i; k ¼ 0; . . . ;1; l ¼ 0; . . . ; 2k � 1; i ¼ 0;No

�
: ð23Þ

The resolution level k for any k 2 n will be denoted by jkj. Using this convention, the MW expansion of
~PðxÞ can be expressed as:

~PðxÞ ¼ PNo

0 ½ ~P� þ
X
k2n

~PkwkðxÞ ¼
XNo

i¼0

~P
0

i0/iðxÞ þ
X
k2n

~PkwkðxÞ: ð24Þ

Letting n0 ¼ �No � 1;�No; . . . ;�1f g and } ¼ n [n0, we can rewrite Eq. (24) as

~PðxÞ ¼
X
k2}

~PkWkðxÞ; ð25Þ

where

WkðxÞ ¼ wkðxÞ for k 2 n;
WkðxÞ ¼ /1�kðxÞ for k 2 n0:

�
ð26Þ

Thus, the process can be expanded as

PðnÞ ¼ ~PðxÞ ¼
X
k2}

~PkWkðxÞ:

3.4. The multi-dimensional case

Extension of the 1D MW expansion to the N -dimensional case is now considered. For simplicity, we

focus on a vector n with random components fn1ðhÞ; . . . ; nN ðhÞg. We assume that the components of n are

uncorrelated and independent, so that

pdfðnÞ ¼
YN
d¼0

pdfdðndÞ:

where pdfd denotes the probability density function of the nd . Consistent with the 1D case, we also assume

that

pdfdðndÞ ¼
> 0 if n 2 ðad ; bdÞ;
0 if n 62 ðad ; bdÞ

�
ð27Þ

so that 8xd 2 ½0; 1� there is a unique nd 2 ðad ; bdÞ such that

pdðndÞ �
Z nd

a
pdfdðn0Þdn0 ¼ xd :
d
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We now consider the multi-index k ¼ ðk1; . . . ; kN Þ, and define the set

Kk ¼ k :
XN
d¼1
jkd j

(
¼ k

)
: ð28Þ

Let Mk ¼ CardðKkÞ, and define the set

Wk �
YN
d¼1

Wkd ðxdÞ : k
(

� ðk1; . . . ; kNÞ 2 Kk

)
ð29Þ

of multidimensional multi-wavelets having resolution level k. The MW expansion of ~PðxÞ can now be

formally written as:

~PðxÞ ¼
XM0

i¼1
c0iC

0
i ðx1; . . . ; xN Þ þ

XM1

i¼1
c1iC

1
i ðx1; . . . ; xN Þ þ

XM2

i¼1
c2iC

2
i ðx1; . . . ; xN Þ þ � � � ; ð30Þ

where CkðxÞ 2Wk denotes a multidimensional wavelet of resolution level k. In practice, the MW expansion

has to be truncated. Here, we choose to retain all multi-indices k such that jkj �
PN

d¼1 jkd j6Nr, where Nr is

a prescribed resolution level. After truncation, the finite expansion may be rewritten in a single index form

as:

~PðxÞ �
XP
i¼0

~PiM
w
i ðx1; . . . ; xN Þ; ð31Þ

where P þ 1 ¼
PNr

i¼0 Mi is the dimension of the truncated basis fMw
i ; i ¼ 0; . . . ; Pg. Further, we use the

convention that the indexing is performed in such a way that the first element of the basis is Mw
0 ¼ 1.

3.4.1. Mean and variance

The mean of PðnÞ is, by definition, given by:

hPi ¼
Z b1

a1

dn1 � � �
Z bN

aN

dnN PðnÞ
YN
d¼1

pdfdðndÞ
" #

¼
Z 1

0

dx1 � � �
Z 1

0

dxN ~Pðx1; . . . ; xN Þ
h i

: ð32Þ

Introducing the MW expansion (31) in the above one immediately obtains:

hPi ¼ ~P0:

An expression for the variance of P may be obtained in an analogous fashion. By definition, we have:

r2ðPÞ ¼
Z b1

a1

dn1 � � �
Z bN

aN

dnN PðnÞ½ � hPi�2
YN
i¼1

pdfðniÞ

¼
Z 1

0

dx1 � � �
Z 1

0

dxN ~Pðx1; . . . ; xN Þ
h

� ~P0

i2
: ð33Þ

Introducing the expansion (31) in the previous expression, and taking into account the orthonormality of

the basis functions, we get:

r2ðPÞ ¼
XP
i¼1

~P2
i :
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4. Application to the Lorenz system

The MRA scheme above is first applied to the stochastic Lorenz system:

oX
ot ¼ qðY � X Þ;
oY
ot ¼ RaðhÞX � Y � XZ;
oZ
ot ¼ �aZ þ XY ;

8>><>>: ð34Þ

where q ¼ 10, a ¼ 8=3 and RaðhÞ is a random parameter with uniform distribution over ½15; 21�. Deter-
ministic initial conditions are used, according to X ðt ¼ 0Þ ¼ Y ðt ¼ 0Þ ¼ Zðt ¼ 0Þ ¼ 1. For the present set-

ting, the Lorenz system exhibits damped oscillations for all possible values of Ra, leading to an

asymptotically steady solution as t!1. However, the damping time-scale exhibits sharp dependence on

Ra. Below, we shall focus on the statistics of X at time t ¼ 25. At this value of t, the solution for the lower

values of Ra has nearly achieved a steady state, while the solution for higher values of Ra still exhibits large-

amplitude oscillations. Such sharp variation with Ra requires a refined discretization along the random

dimension in order to properly represent the local dynamics. In Section 4.1, the h- and p-convergence of the
computed expectation and standard deviation of X are investigated. Then in Section 4.2, the same problem
is solved using two MC sampling techniques in order to assess the efficiency of the MRA scheme.
4.1. h–p-convergence of the MW expansion

4.1.1. Solution method

For given expansion order and resolution level, the solution is approximated using:

ðX ; Y ; ZÞðt; nÞ ¼ ð~X ; ~Y ; ~ZÞðt; xÞ �
XP
b¼0
ð~X ; ~Y ; ~ZÞbðtÞMw

b ðxÞ; ð35Þ

where we have suppressed, for clarity, the explicit dependence on h. Introducing these expansions into the

Lorenz equations, and using the Galerkin approach outlined in Section 2, one obtains the following

coupled system for the MW coefficients:

o~Xb

ot ¼ qð~Yb � ~XbÞ;
o~Yb
ot ¼

gðRaXÞb � ~Yb � gðXZÞb;
o~Zb

ot ¼ �a
~Zb þ gðXYÞb;

8>>>><>>>>: ð36Þ

which need to be solved for all b ¼ 0; . . . ; P . The initial conditions are also obtained by application of the

Galerkin approach, resulting in:

~Xbðt ¼ 0Þ ¼ ~Ybðt ¼ 0Þ ¼ ~Zbðt ¼ 0Þ ¼ 1 for b ¼ 0;
~Xbðt ¼ 0Þ ¼ ~Ybðt ¼ 0Þ ¼ ~Zbðt ¼ 0Þ ¼ 0 for b ¼ 1; . . . ; P :

�
ð37Þ

The time integration of the 3� CardðNr;NoÞ ¼ 3ðNo þ 1Þ2Nr unknownMW coefficients is performed using a

fourth-order Runge–Kutta scheme, with a time step Dt ¼ 0:005. This was selected based on successive
refinement until the solution became essentially independent of Dt. Note that in order to integrate the above

system, one needs to evaluate the MW expansion of the products of two stochastic quantities, as in the

quadratic term fXZ . To this end, we rely on an ‘‘exact’’ Galerkin procedure, according to
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gðXZÞb ¼ h~X ~Z;Mw
b i ¼

XP
k¼0

XP
c¼0
ð~Xk

~ZcÞMw
kM

w
c ;M

w
b

* +
¼
XP
k¼0

XP
c¼0

~Xk
~ZchMw

kM
w
c ;M

w
b i: ð38Þ

Since the multiplication tensor hMw
aM

w
b ;M

w
c i is solution independent, it is computed and stored in a

pre-processing stage. As further discussed below, this tensor is sparse and thus only the non-zero entries

are stored and actually used in the computations [10,17]. This minimizes both storage and CPU

requirements.

4.1.2. Convergence results

Fig. 1 shows the computed values of X ðt;RaÞ for 206 t6 25; plotted are results obtained with

Nr ¼ 1; . . . ; 4 and No ¼ 0; . . . ; 4. In all the frames, the same contour levels are used. The results illustrate the

convergence of the predictions as Nr and No increase. The plots appear to indicate that convergence is faster

for the lower values of Ra, where the solution has essentially decayed, than for the higher values, where X
still exhibits large oscillations. This reveals an interesting feature of the MW representation (which has also
been observed for WHa expansions [19]) namely that errors can be localized to regions where insufficient

resolution is provided. This is in contrast to classical spectral representations, where under-resolution

typically results in global breakdown of the solution.

Additional quantitative assessment of the h–p convergence of the MRA scheme is obtained by analyzing

the computed solution statistics at t ¼ 25. Table 1 shows the computed values of hX i at t ¼ 25, for ex-

pansion orders 06No 6 6 and resolution levels 06Nr 6 6. The results indicate that the predictions converge

as Nr and No are increased. For Nr ¼ 0, however, p-convergence is very slow and accuracy up to two digits is

not achieved even for No ¼ 8 (not shown). In particular, the results also indicate that in order to achieve
accuracy up to the third digit, a fifth-order expansion is needed for Nr ¼ 1, while using No ¼ 0 with Nr ¼ 6

provides similar accuracy. Similar trends are also observed when analyzing the predictions of the standard

deviation rðX Þ, which are reported in Table 2.

The results above indicate that in order to improve the accuracy of the predictions, one may either

increase the number of resolution levels (h-refinement) or the expansion order (p-refinement). Since for

complex problems it is usually desirable to maintain a moderate expansion order, typically No 6 4 (see

Section 5), increasing Nr provides suitable means to enhance the predictions. This raises the question

concerning how Nr and No should be selected so as to achieve target accuracy at the lowest possible CPU
cost. For the present simple setting, this question may be addressed by relating CPU cost to discretization

parameters. A rough initial estimate is the size of the ODE system, which is proportional to

CardðNr;NoÞ ¼ ðNo þ 1Þ2Nr (Table 3). However, since the computational load is in fact dominated by the

evaluation of quadratic Galerkin products, a sharper estimate is based on the number of operations ac-

tually performed in these products, which is proportional to the number of non-zero entries in the mul-

tiplication tensor hMw
kM

w
c ;M

w
b i. This number, which is used as surrogate measure for CPU, is denoted by

CðNr;NoÞ and reported in Table 4 for different values of Nr and No. Comparison of Tables 3 and 4 shows

that with increasing refinement CðNr;NoÞ increases much more quickly than CardðNr;NoÞ.
Next, we seek a relationship between CPU and accuracy by plotting in Fig. 2 the absolute errors in

hX i and rðX Þ at t ¼ 25 against CðNr;NoÞ. For the purpose of estimating errors, the solution obtained

using Nr ¼ 6 and No ¼ 2 has been used as surrogate for the exact solution (MC predictions below

support this approximation). The results indicate that for the present parameter range the ‘‘errors’’ on

the first two statistical moments of X decay roughly as CðNr;NoÞ�2. While the details of this rela-

tionship may be dependent on the problem and parameter range, the collapse of the data clearly in-

dicates that in the present case the ‘‘complexity estimate’’ CðNr;NoÞ provides a good measure for both

the CPU and the accuracy of the predictions. In addition, the results provide a convenient means for
selecting Nr and No, and indicate that multiple alternatives may exist for achieving a target accuracy

level.
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Fig. 1
4.2. Comparison with Monte-Carlo sampling

In this section, we compare the efficiency of the MRA scheme above with that of MC sampling strat-

egies. The latter rely on computing deterministic solutions for specific values of the random parameters, and
60123450123455678901012345 (θ) Ra (θ) 

Ra (θ) Ra (θ) Ra (θ) Ra (θ) Ra (θ) Ra (θ) Ra (θ) Ra (θ) 

. Iso-lines ofX ðt2 ½ 20;25�;RaÞof the stochastic Lorenz problem, forNr¼1;. . . ;4 (left to right) andNo¼0;. . . ;4 (top tobottom). Time increases along the horizontal axis, while the vertical axis corresponds toRa2 ½ 15;21 �. The same contour levels are usedfor all plots.

O.P. Le Ma^ıtre et al. / Journal of Computational Physics 197 (2004) 502–531511



Table 3

Values of CardðNr;NoÞ for different order and number of resolution levels

CardðNr;NoÞ No ¼ 0 No ¼ 1 No ¼ 2 No ¼ 3 No ¼ 4 No ¼ 5 No ¼ 6

Nr ¼ 0 1 2 3 4 5 6 7

Nr ¼ 1 2 4 6 8 10 12 16

Nr ¼ 2 4 8 12 16 20 24 28

Nr ¼ 3 8 16 24 32 40 48 56

Nr ¼ 4 16 32 48 64 80 96 112

Nr ¼ 5 32 64 96 128 160 – –

Nr ¼ 6 64 128 192 256 – – –

Table 4

Values of CðNr;NoÞ for different order and number of resolution levels

CðNr;NoÞ No ¼ 0 No ¼ 1 No ¼ 2 No ¼ 3 No ¼ 4 No ¼ 5 No ¼ 6

Nr ¼ 0 1 4 11 29 42 69 106

Nr ¼ 1 4 22 69 166 308 531 880

Nr ¼ 2 16 154 611 1538 3084 5457 9034

Nr ¼ 3 52 706 2883 7354 14,936 26,541 43,254

Nr ¼ 4 148 2578 10,625 27,434 56,040 99,561 160,018

Nr ¼ 5 388 8242 34,305 89,094 181,216 – –

Nr ¼ 6 964 24,178 101,501 262,826 – – –

Table 1

Computed values of hX i at t ¼ 25 for the stochastic Lorenz system with different values of Nr and No

�hX i No ¼ 0 No ¼ 1 No ¼ 2 No ¼ 3 No ¼ 4 No ¼ 5 No ¼ 6

Nr ¼ 0 6.739074 6.702924 3.657155 5.305756 6.844937 6.575842 6.669102

Nr ¼ 1 6.754146 6.742118 6.702877 6.731783 6.741929 6.730446 6.730405

Nr ¼ 2 6.716436 6.740495 6.733795 6.731213 6.730252 6.730173 6.730114

Nr ¼ 3 6.738296 6.729341 6.730230 6.730139 6.730108 6.730105 –

Nr ¼ 4 6.731381 6.730081 6.730106 6.730105 6.730105 – –

Nr ¼ 5 6.730400 6.730104 6.730105 6.730105 – – –

Nr ¼ 6 6.730177 6.730105 6.730105 – – – –

Table 2

Computed values of rðX Þ at t ¼ 25 for the stochastic Lorenz system with different values of Nr and No

rðX Þ No ¼ 0 No ¼ 1 No ¼ 2 No ¼ 3 No ¼ 4 No ¼ 5 No ¼ 6

Nr ¼ 0 0.000000 0.316249 5.660838 3.312410 0.518508 0.220683 0.287331

Nr ¼ 1 0.327423 0.375252 0.312143 0.381295 0.371085 0.360037 0.360215

Nr ¼ 2 0.329662 0.373340 0.361711 0.360578 0.357961 0.357668 0.357666

Nr ¼ 3 0.371072 0.355050 0.357989 0.357654 0.357668 0.357667 –

Nr ¼ 4 0.358382 0.357673 0.357667 0.357668 0.357667 – –

Nr ¼ 5 0.357853 0.357666 0.357667 0.357667 – – –

Nr ¼ 6 0.357713 0.357667 0.357667 – – – –
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then evaluating the desired moments through a collocation approach [15,21]. Since individual solutions are

deterministic, the evaluation of the product XY of X and Y requires a single operation, so that the

‘‘complexity’’ of obtaining a single MC realization is taken to be 1. This provides a consistent approach for

comparing the efficiency of MRA and MC. In other words, the CPU load in MRA is gauged using

CðNr;NoÞ while in MC it is gauged using the number, m, of realizations.
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Fig. 2. Absolute errors on the expectation and standard deviation of X , at t ¼ 25, as a function of the number of operations in the

spectral product: CardðNr;NoÞ. The exact solution is taken to be the computed values for Nr ¼ 6 and No ¼ 2, as reported in Tables 1

and 2. The solid lines are 	x�2.
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4.2.1. Classical sampling strategy

A classical MC sampling strategy is first applied. The approach is based on using a random number

generator to generate m independent realizations of the stochastic parameter, Rai, i ¼ 1; . . . ;m, that are
uniformly distributed over the interval ½15; 21�. For each realization, the corresponding deterministic

Lorenz system is integrated up to t ¼ 25, resulting in particular in a set of predictions, Xi, i ¼ 1; . . . ;m. The
first two statistical moments of X are then estimated using

hX im ¼
1

m

Xm
i¼1

Xi

and

r2
mðX Þ � ðX

D
� hX imÞ

2
E2

¼ 1

m� 1

Xm
i¼1

X 2 � hX i2m:

In Fig. 3, the absolute errors in hX i and rðX Þ are plotted against the number of MC realizations,

16m6 107. As in the analysis above, the MRA solution with Nr ¼ 6, No ¼ 2 is used as surrogate for the

exact solution for the definition of the errors. The results indicate that the errors in hX i and rðX Þ decay as

m�1=2, as expected for an unbiased sampling strategy. (This behavior in fact justifies the use of the resolved
MRA estimate as a substitute of the exact solution.) The low convergence rate of the present sampling

scheme is contrasted with that of the MRA scheme, where errors would scale as m�2. Comparison of Figs. 2

and 3 also shows that the number of operations needed to achieve error levels smaller than 10�2 is much

smaller for MRA than for MC. Thus, for the present stochastic Lorenz problem, the MRA scheme appears

to be substantially more efficient than conventional MC.

4.2.2. Latin hypercube sampling

A Latin hypercube sampling (LHS) strategy [24] is considered in this section in order to improve the
convergence of the MC approach. The essential feature of LHS is to divide the probability domain into a

set, ðNbinÞ, of bins having equal probability, and then to perform classical MC sampling on each of the bins.

This strategy enhances the effectiveness of the MC computations, especially at low values of m, by forcing

the sampling scheme to visit all the bins, before hitting a given bin a second time.

The convergence of the LHS scheme is illustrated in Fig. 4, where the errors in hX i and rðX Þ at t ¼ 25 are

plotted against the total number of samples, m. Shown are results obtained using Nbin ¼ 10; 100 and 1000.



Fig. 3. Absolute errors on hX i and rðX Þ at t ¼ 25 versus the number of MC samples.
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The results indicate that LHS enhances the convergence of the MC simulations, especially for low values m
(m < 10; 000). On the other hand, when m=Nbin becomes large, the asymptotic convergence rate of classical

MC method in 1=
ffiffiffiffi
m
p

is recovered. Despite the improvement over the standard MC approach, the per-

formance of the LHS is significantly lower than that of the MRA.
Fig. 4. Absolute errors on hX i (top) and rðX Þ (bottom) for LHS at t ¼ 25. The right plots show enlarged views for 104 6m6 106.
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4.3. Discussion

The numerical tests of the previous section illustrated the convergence of the MW expansion with
increasing order No and resolution levels Nr. The tests also revealed that for the present setting, the

MRA scheme offers substantial improvement in efficiency over MC approaches. On the other hand, the

tests also indicate that the computational overheads of MRA (as measured using C) rapidly increase as

the MW parameters (Nr;No) are refined. This points to potentially severe limitations in the extension of

MRA to stochastic problems with multiple random parameters. Means to overcome such limitations

are addressed in the section below, where adaptive strategies are considered in single- and multi-di-

mensional settings.
5. Adaptive strategies

Adaptive schemes generally aim at reducing CPU cost by adjusting the quality of the representation

locally where needed. In this section, we explore the possibility of locally refining both the local expansion

order and the resolution level of the MW expansion. As a first attempt toward such strategy, we shall

restrict ourselves in this work to adaptation of the resolution level. Adaptive strategies based on both ex-

pansion order and resolution will be considered elsewhere. Within the present framework, two means are
attempted to reduce CPU cost. A first possibility (Section 5.1) is to disregard the basis components cor-

responding to low magnitude MW coefficients. This approach is expected to bring substantial saving, since

at the highest resolution levels the MW coefficients have non-vanishing values only in areas where the

solution exhibits steep dependence on the random data. A second approach (Section 5.2) is developed based

on partitioning the space of random data, yet maintaining the original expansion at all levels considered.
5.1. Adaptive MW expansion

5.1.1. Refinement strategy

As outlined above, the present approach aims at reducing the CPU cost by adaptively refining the MW

expansion. For simplicity, discussion is restricted to the one-dimensional case. The essential concept, which

is similar to compression in image processing, is outlined as follows. Given the highest resolution level
allowed, Nr, we denote } the restriction of } to MW corresponding to resolution levels 6Nr. Then, the

solution ~sðxÞ is expanded using a reduced basis

~sðxÞ �
X

k2}a
}

~skWkðxÞ; ð39Þ

where }a 
 } is a reduced set of MW indices such that

}a � fk 2 } : j~skj > eag: ð40Þ

Here, ea is a prescribed threshold parameter that may be a function of the resolution level, i.e., ea ¼ eaðjkjÞ.
Clearly, for this scheme, the expansion retains only details with significant ‘‘energy’’. Obviously, since ~sðxÞ is
yet to be determined, it is not possible to reduce } a priori. To overcome this difficulty, an iterative scheme

is constructed, where the representation is successively refined, by locally increasing the level of resolution

only where needed. The algorithm below is used for this purpose:

1. Initialization. We start with computing an initial coarse approximation of ~sðxÞ, denoted ~sðl¼0ÞðxÞ, on
}ðl¼0Þa � D0.

2. Analysis. Let us denote d}ðlÞ the set of integer indices defined as
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d}ðlÞ � }ðlÞa \ fb : jbj ¼ l; j~sðlÞb j > eaðlÞg: ð41Þ

We consider the following two situations:

• If d}ðlÞ ¼ ; the adaptive scheme has converged, ~sðlÞðxÞ is the final solution and the iterations are

stopped.
• Otherwise, we have d}ðlÞ ¼ fb0; . . . ; bqg then the solution ~sðlÞ needs refinement over the union of the

supports of the elements of d}ðlÞ,

Supp½d}ðlÞ� �
[

b2d}
ðlÞ

SuppðWbÞ:

3. Refinement. We set

}ðlþ1Þa ¼ }ðlÞa [ d}ðlÞa ;

where

d}ðlÞa � k 2 n : jkj
n

¼ lþ 1 and SuppðWkÞ 
 Supp½d}ðlÞ�
o
:

4.Computation. Compute ~sðlþ1Þ the approximation of s spanned by fWk; k 2 }ðlþ1Þa g. If l < Nr, where Nr is a

prescribed maximal resolution level, set l ¼ lþ 1 and go back to step 2.

Note that the iterative scheme above generates a continuous cascade of details at successive resolution
levels. Specifically, for any index k 2 }ðl>0Þ

a with jkjP 1, 9b 2 }ðlÞa such that jbj ¼ jkj � 1 and

SuppðWkÞ � SuppðWbÞ. In other words, any MW of resolution level k > 1 of the adaptive basis has par-

ents. Thus, one may not be able to guarantee that the iterations give liml!1 }
ðlÞ
a ¼ }a for every function ea

and process sðnÞ. Moreover, while more elaborate versions of the scheme above can be conceived, the

simple approach above may still be well-suited for most applications. Below, it is applied to a stochastic

Rayleigh–B�enard problem.

5.1.2. Stochastic Rayleigh–B�enard problem

To test the adaptive refinement scheme, we consider the problem initially treated in [19]. The setup

consists of a 2D rectangular cavity with adiabatic vertical walls. The upper boundary is maintained at a

deterministic cold temperature, Tc, while the bottom wall has a spatially uniform random temperature

ThðnÞ. The system is characterized by three non-dimensional parameters: the Rayleigh number

Ra ¼ qgbDTH 3=lj ¼ 2150; the Prandtl number Pr ¼ lCp=j ¼ 0:71, and the aspect ratio A ¼ L=H ¼ 2;

where q is the fluid density, g the gravity, b the thermal expansion coefficient, DT ¼ hThi � Tc, l the fluid

viscosity, j the thermal conductivity, Cp the heat capacity, L and H the cavity length and height, respec-

tively. Denoting by H ¼ ðT � TrefÞ=Tref the scaled temperature, where 2Tref ¼ hThi þ Tc, we assume that
HhðnÞ, is uniformly distributed on the interval ½0:3; 0:7�. The difficulty in the present setup arises from the

presence of a critical point, corresponding to Hh ¼ 0:4301 [19]. For Hh < 0:4301, the system has a stable

solution corresponding to a pure conductive regime with vanishing fluid velocity, while for Hh > 0:4301
two steady fluid recirculations exist, enhancing the heat transfer across the cavity compared to the con-

ductive regime.

The flow inside the cavity is modeled using the Navier–Stokes equations in the Boussinesq limit [18,20].

The governing equations are solved on 60� 30 computational grid using a second-order scheme. The

stochastic projection method (SPM) is used for this purpose [20]. It was shown in [19] that a WLe expansion
(corresponding to Nr ¼ 0 in the present MRA construction) fails to correctly represent the bifurcation in

the uncertainty range, while a WHa expansion (corresponding to No ¼ 0 in the MRA scheme) provides

robust estimates. The adaptive scheme is now employed using No ¼ 1, 2 and 3, and a maximal resolution
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level Nr ¼ 6. For the purpose of the analysis step of the adaptive scheme, a stochastic observable s has to be

selected. In the computations below, we rely on the overall heat transfer rate, i.e., we set

~sðlÞðxÞ ¼
X
k2}

ðlÞ
a

WkðxÞ
Z A

0

o ~HðlÞk
Aoz

dy; ð42Þ

where z and y are the normalized vertical and horizontal coordinates. For the refinement threshold, we set

eaðkÞ ¼ 0:03� 2jkj. When the set of indices is increased from }ðlÞa to }ðlþ1Þa , the newly created MW coeffi-

cients are initialized to zero, while the others are kept at their previously computed values. Then the flow

equations are time-integrated up to the steady state, before being further analyzed for refinement. Note that

the simulation time needed to reach the steady state increases with the iteration index l, since the newly

added MW are increasingly localized around the critical point, where the growth rate of the instability

vanishes. As in [19], the normalized heat transfer enhancement, defined as

dfNuðlÞðxÞ � ~sðlÞðxÞ=ð ~HhðxÞ �HcÞ � 1

is monitored for the purpose of analyzing the predictions.

In Fig. 5 the values of dNu obtained the end of the iterations are plotted against Hh. As for the WHa

solution in [19], the discontinuity at the critical temperature is well captured. Also plotted in Fig. 5 are the

(rescaled) details of ~sðlÞ at different resolution levels (k > 1), as obtained at the end of the refinement. The
results illustrate how the solution is refined in the neighborhood of the critical point, and only there. In fact,

at each iteration l, refinement occurs within the support of the current-level MWs that overlap the critical

point. Moreover, for the selected threshold function ea, it is observed that the iterative scheme proceeds up

to the maximal resolution level allowed (Nr ¼ 6) for No ¼ 1 and 2, but stops at level k ¼ Nr � 1 for No ¼ 3.

Also note that the predictions for the three expansion orders considered are in excellent agreement with

each other, suggesting that in all cases accurate predictions are obtained.

For a better appreciation of the efficiency of the adaptive scheme, we provide in Table 5 an analysis of

the size of the ‘‘adapted’’ basis. The first three columns provide, respectively, the highest resolution level at
the end of the iterations, the dimension of the basis and the corresponding value of Ca. The efficiency of the

adaptive refinement is estimated by the ‘‘compression’’ ratios, Carda=CardðNrf ;NoÞ and Ca=CðNrf ;NoÞ,
between the adaptively reduced basis and the full basis. As shown in Table 5, these ratios are quite small,

and thus reveal a substantial reduction in CPU cost.
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Fig. 5. Computed values dNu versus hh, for No ¼ 1 (left), 2 (middle) and 3 (right). The plots also depict the details ~sðlÞ at different
resolution levels, k, as indicated. The details are shifted in the vertical direction for clarity.



Table 5

Properties of the reduced basis obtained by adaptive refinement

Order Nrf Carda Ca Carda=CardðNrf ;NoÞ Ca=CðNrf ;NoÞ

No ¼ 1 6 24 2602 0.1875 0.1076

No ¼ 2 6 36 10,855 0.1875 0.1070

No ¼ 3 5 40 17,174 0.3125 0.1928

Provided are the maximal refinement level, Nrf at the end of the iterations, the dimension of the basis, and the corresponding value

of Ca. Also shown are the ‘‘compression’’ ratios, Carda=CardðNrf ;NoÞ and Ca=CðNrf ;NoÞ.
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5.1.3. Remarks

The experiences above suggest that, in situations requiring a high level of local refinement, lower-order

expansions are preferable to higher-order expansions as the former are more likely to have lower com-

pression ratios than the latter. While very low compression ratios may be expected in problems with large

number N of stochastic dimensions, extension of the present adaptive refinement scheme to the multidi-

mensional case may prove difficult to implement. In addition, since, as noted earlier, the dimension of the

basis and the number of Galerkin operations increase rapidly with N , small compression ratios may not be
sufficient to overcome the added complexity in multi-dimensional problems. These observations in part

motivate the alternative approach below.
5.2. Adaptive partitioning of random parameter space

The experiences of the previous adapative section indicate that it is possible to minimize the CPU load of

MRA of stochastic problems by limiting the number of overlapping MW supports. However, one draw-

back of the scheme above is that the complexity of the spectral product, which reflects the coupling between
MW coefficients, quickly increases. This is due to the generation of a continuous cascade of details at

successive scales. This observation raises the question whether a truly local analysis, that decouples the

representation at different scales, can lead to even more efficient computations.

In this section, we develop a local refinement scheme based on the expansion in Eq. (17). Comparison of

the two expansions in Eqs. (17) and (18) shows that the former, in terms of / functions, does not involve

any summation over the scale indices, contrary to the expansion in terms of details, w. This difference stems

from the fact that the basis functions /k
il, i ¼ 0; . . . ;No and l ¼ 0; . . . ; 2k � 1, couple with only No other

components, namely those having the same sliding index l. In contrast, the wk
il couple with many other

components. This suggests an adaptive strategy based on successive partitions of the random parameter

space, through the determination of a local resolution level. These considerations lead us to the second

adaptive scheme below.

5.2.1. Partition of the random parameter space

Let X ¼ ½a1; b1� � � � � � ½aN ; bN � be the space of random parameters. Let Xm, m ¼ 1; . . . ;Nb be a finite

partition of X in Nb non-overlapping subdomains:

Xm ¼ ½am1 ; bm1 � � � � � � ½amN ; bmN �;
X ¼

SNb

m¼1 X
m;

Xm \ Xm0 ¼ ; if m 6¼ m0:

8<: ð43Þ

On each of the subdomains Xm we define the local probability density function of n, denoted by pdfmðnÞ.
Since the components of n are independent, we have:
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pdfmðnÞ ¼
YN
d¼1

pdfmd ðndÞ; ð44Þ

where pdfmd ðnÞ is defined according to

pdfmd ðnÞ �
pdfdðnÞ

pdðbmd Þ � pdðamd Þ
: ð45Þ

Clearly, we have

pdfmðnÞ > 0 for n 2 Xm and

Z
Xm

pdfmðnÞdn ¼ 1: ð46Þ

Moreover, defining

pmd ðn 2 ½amd ; bmd �Þ �
Z n

amd

pdfmd ðn
0Þdn0 ¼ rmd ; ð47Þ

we see that rmd 2 ½0; 1�. Thus, if xmd is uniformly distributed over ½0; 1�, then the random variable
ðpmd Þ

�1ðxmd Þ 2 ½amb ; bmd � and has the same distribution as nmd . Thus, a second-order stochastic process can be

locally expanded on Xm, in terms of the random vector xm, having independent components

ðxm1 ; . . . ; xmN Þ 2 ½0; 1�
N
.

5.2.2. Local expansion basis

Let c be the set of multidimensional indices

c ¼ ðc1; . . . ; cN Þ :
XN
d¼1

cd

(
6No

)
:

For n 2 Xm, we build the local projection basis as

BpðXmÞ � Um
k2cðxm1 ; . . . ; xmNÞ

(
�
YN
d¼1

/kd ðx
m
d Þ
)

and the details directional basis Bd
a , d ¼ 1; . . . ;N as

Bd
aðXmÞ � wiðxmd Þ; i

�
¼ 0; . . . ;No

�
:

The complete local expansion basis will be the union of Bp and Bd
a :

BðXmÞ ¼ BpðXmÞ þ
[N
d¼1

Bd
aðXmÞ:

Finally, the multidimensional process PðnÞ will have for local expansion on Xm

PðnÞ �
X
k2c

~Pm
k1;...;kN

Uk1;...;kN ðxm1 ; . . . ; xmN Þ þ
XN
d¼1

XNo

i¼0

~Pm
d;iwiðxmd Þ: ð48Þ

Note that the local basis BðXmÞ, spanning the local expansion of P according to Eq. (48), is in fact the

rescaled Legendre polynomials basis (BpðXmÞ) augmented with the first-level detail basis, Bd
a , d ¼ 1; . . . ;N .
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Thus,PðnÞ, for n 2 Xm, approximated by Eq. (48) is the local Wiener–Legendre projection of order No, plus

one-dimensional details. The utility of the one-dimensional details will be made clear soon.

The local expectation of P is given by hPiXm ¼ Pm
0;...;0, and its local variance is

r2
XmðPÞ � r̂Xm

� �2
þ
XN
d¼1

rd
Xm

	 
2
;

where we have denoted

r̂Xm

� �2
�
X
k2cp

ðPm
k Þ

2
; rd

Xm

	 
2 �XNo

i¼0
Pm

d;i

� �2
;

with cp ¼ c� 0; . . . ; 0f g.

5.2.3. Global statistics

The total expectation of the process is given by the volume-weighted summation of the local expecta-

tions:

hPi ¼
XNb

m¼1
hPiXmVolm; ð49Þ

where Volm is the volume of the mth subdomain of the random parameter space

Volm ¼
YN
d¼1
ðpdðbmd Þ � pdðamd ÞÞ:

Finally the total variance of the process is given by

r2ðPÞ ¼
XNb

m¼1
r2
XmðPÞ

�
þ Pm

0;...;0

�
� hPi

�2�
Volm: ð50Þ
5.2.4. Adaptive strategy

Assume that the current partition of X involves Nb blocks, i.e., X ¼
SNb

m¼1 X
m. On each subdomain Xm,

the process is expanded on the local basis BðXmÞ, with the spectral coefficients computed through Galerkin

projection methods as in the previous test problems. To decide if a given block m needs more refinement,

and to determine which stochastic directions need such refinement, we consider the following test:

if
rd
Xm

rXm

P e2ðVolmÞ: ð51Þ

If the inequality is satisfied, the subdomain is refined along the dth dimension. Here e2ðVolmÞ < 1 is a

prescribed threshold function. Note that the test compares the ‘‘energy’’ of the one-dimensional details

along the dth stochastic direction with the local variance of the solution. In other words, the one-dimen-

sional detail coefficients are used as indicators of the quality of the representation along their respective

stochastic direction. A new partition of X is then constructed, by splitting Xm into smaller subdomains.

Specifically, if we assume the inequality (51) is satisfied for a single dimension d, then refinement of

Xm ¼ ½am1 ; bm1 � � � � � � ½amN ; bmN � will give birth to two new subdomains Xm0 and Xm00 , defined by:
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Xm0 ¼ ½am01 ; bm
0

1 � � � � � � ½am
0

N ; b
m0
N �

¼ ½am1 ; bm1 � � � � � � ½amd ; ðamd þ bmd Þ=2� � � � � � ½amN ; bmN �;
Xm00 ¼ ½am001 ; bm

00
1 � � � � � � ½am

00
N ; bm

00
N �

¼ ½am1 ; bm1 � � � � � � ½ðamd þ bmd Þ=2; bmd � � � � � � ½amN ; bmN �:

8>>><>>>: ð52Þ

Then, local expansions of the process on the newly created subdomains are computed, before being ana-

lyzed to determine whether additional refinement is needed. This sequence of analysis and refinement steps

is repeated up to convergence. It is emphasized that, during refinement, computations are performed in

newly created subdomains only, since the local solutions over other subdomains are unaffected, the ex-

pansions being local. Note also that this methodology is well suited for parallel implementation, since local
computations are independent of each other.
5.3. Adaptive partitioning of the random parameter space

5.3.1. Test problem

We consider the following test problem:

dq
dt
¼ að1� qÞ � cq� bðq� 1Þq2;

qðt ¼ 0Þ ¼ q0;

(
ð53Þ

which models the time-evolution of the surface coverage q 2 ½0; 1� for a given species [22]. a is the surface

absorption rate, c is the desorption rate, and b is the recombination rate (the exponent 2 is due to the need
of two sites for a recombination) [22]. This problem has one or two fixed points according to the value of b
and it exhibits smooth dependence on the other parameters. In Section 5.3.2, the statistics of the solution at

t ¼ 1 are investigated considering uncertainties in the initial coverage q0 and in the reaction parameter b.
Next in Section 5.3.3, uncertainty in a is also considered, increasing the number of stochastic dimensions to

3. We shall consider that q0 is uniformly distributed in the range ½0; 1�; the distributions of other random

parameters are specified later. In order to propagate the uncertainty and determine its impact on the so-

lution, the Galerkin scheme is applied to the governing equation (53). The resulting coupled system of

ODEs is integrated in order to determine the evolution of the expansion coefficients. A fourth-order
Runge–Kutta scheme is used for this purpose, with a time step Dt ¼ 0:01.

5.3.2. Two-dimensional problem

In this section, deterministic values of the absorption and desorption rates are used, respectively a ¼ 1

and c ¼ 0:01. Meanwhile, b is assumed to be uniformly distributed in the interval ½0; 20�. Thus the problem
has two stochastic dimensions, n ¼ fn1; n2g with n1 uniformly distributed in ½0; 1� and n2 uniformly dis-

tributed in ½0; 20�.
Computations are performed with an expansion order No ¼ 3, and the results are used to analyze the

statistics of the surface coverage, q, at time t ¼ 1. Fig. 6 illustrates the computed solution, obtained with

different values of the threshold e2. The latter is expressed as e2ðVolÞ ¼ C=
ffiffiffiffiffiffiffiffiffiffi
Volm
p

, where C is a prescribed

constant. Four values are considered, namely C ¼ 0:5, 0.1, 0.01, and 0.001. Shown in Fig. 6 are the pre-

dicted response surface of q plotted against the random input data, the partitions of random parameter

space as determined by the adaptive scheme, and the pdf of qðt ¼ 1Þ. The latter is computed by direct

sampling of the spectral expansions using 106 samples.

The results show that with e2 ¼ 0:5=
ffiffiffiffiffiffiffiffiffiffi
Volm
p

only one block is generated, i.e., no subdivisions are per-

formed. The corresponding response surface and pdf reflect a poor approximation, particularly since un-
physical realizations with q < 0 and q > 1 are predicted. When the threshold parameter is decreased to
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0:1=
ffiffiffiffiffiffiffiffiffiffi
Volm
p

, one observes that the solution involves Nb ¼ 5 subdomains. Note that refinement is concen-

trated in areas where the solution exhibits the steepest dependence on random data, as one would expect

based on the construction of the adaptive scheme. Also note that no unphysical realizations are predicted
for this threshold function, as all predicted values of q fall between 0 and 1. As e2 is further decreased (last

two rows of Fig. 6), the partition becomes increasingly more refined, particularly along directions of sharp

variation with respect to the random data. At the lower values of C, the insensitivity of the pdf to the

selected value of C can be easily appreciated.

For a better appreciation of the convergence of the adaptive scheme, we report in Tables 6–8 the

computed mean and standard deviation of qðt ¼ 1Þ for decreasing values of C, respectively, for third,

second, and first-order expansions. The tables also provide the number of subdomains generated during

adaptive refinement, as well as estimates of the CPU load and the memory requirement. The CPU load is
estimated as the product of Cð1;NoÞ with the total number of subdomains computed in order for the

adaptive refinement to converge. The latter includes the number of subdomains that are discarded due to

refinement. The memory requirement is based on the number of MW coefficients of the most refined so-
Table 6

Computed values of hqi and rðqÞ for No ¼ 3 and different threshold functions

e2ðVolmÞ Nb hqi rðqÞ CPU Memory

5� 10�1=
ffiffiffiffiffiffiffiffiffiffi
Volm
p

1 0.338366540 0.329585455 8301 48

1� 10�1=
ffiffiffiffiffiffiffiffiffiffi
Volm
p

5 0.350449337 0.332070259 58,107 240

1� 10�2=
ffiffiffiffiffiffiffiffiffiffi
Volm
p

16 0.350410081 0.332172422 224,127 768

1� 10�3=
ffiffiffiffiffiffiffiffiffiffi
Volm
p

47 0.350410331 0.332171412 622,575 2256

1� 10�4=
ffiffiffiffiffiffiffiffiffiffi
Volm
p

151 0.350410331 0.332171421 1,884,327 7248

1� 10�5=
ffiffiffiffiffiffiffiffiffiffi
Volm
p

439 0.350410331 0.332171421 5,486,961 21,072

Also provided are the number of blocks Nb at the end of the refinement, and estimates of the CPU load and memory requirement.

Table 7

Computed values of hqi and rðqÞ for No ¼ 2 and different threshold functions

e2ðVolmÞ Nb hqi rðqÞ CPU Memory

5� 10�1=
ffiffiffiffiffiffiffiffiffiffi
Volm
p

1 0.346230683 0.335764259 1667 27

1� 10�1=
ffiffiffiffiffiffiffiffiffiffi
Volm
p

6 0.350244115 0.332167461 15,003 162

1� 10�2=
ffiffiffiffiffiffiffiffiffiffi
Volm
p

34 0.350410968 0.332173480 85,017 918

1� 10�3=
ffiffiffiffiffiffiffiffiffiffi
Volm
p

129 0.350410326 0.332171421 325,065 3483

1� 10�4=
ffiffiffiffiffiffiffiffiffiffi
Volm
p

514 0.350410330 0.332171421 1,291,925 13,878

1� 10�5=
ffiffiffiffiffiffiffiffiffiffi
Volm
p

1823 0.350410331 0.332171421 4,322,531 49,221

Also provided are the number of blocks Nb at the end of the refinement, and estimates of the CPU load and memory requirement.

Table 8

Computed values of hqi and rðqÞ for No ¼ 1 and different threshold functions

e2ðVolmÞ Nb hqi rðqÞ CPU Memory

5� 10�1=
ffiffiffiffiffiffiffiffiffiffi
Volm
p

1 0.333617359 0.318197117 190 12

1� 10�1=
ffiffiffiffiffiffiffiffiffiffi
Volm
p

8 0.349221435 0.330668616 2470 96

1� 10�2=
ffiffiffiffiffiffiffiffiffiffi
Volm
p

103 0.350410367 0.332170754 30,970 1236

1� 10�3=
ffiffiffiffiffiffiffiffiffiffi
Volm
p

889 0.350410309 0.332171494 265,050 10,668

ð1� 10�4=
ffiffiffiffiffiffiffiffiffiffi
Volm
p

Þa 3301 0.350410329 0.332171426 892,050 39,612

Also provided are the number of blocks Nb at the end of the refinement, and estimates of the CPU load and memory requirement.
aWith e2 ¼ 1� 10�4=

ffiffiffiffiffiffiffiffiffiffi
Volm
p

, stopping criterion was not reached; further refinement would have required a larger number of sub-

domains than allowed (5000).
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lution, equal to the product of the final number of subdomains with the dimension of the expansion basis

over a single block.

One observes from Tables 6–8 that, for all expansion orders considered, the adaptive predictions appear
to converge to same values of mean and standard deviation, and that the solution for No ¼ 3 appears most

efficient, as the stopping criterion is achieved with the smallest number of subdomains, as well as smaller

CPU and memory requirement. This behavior suggests that the solution is essentially smooth everywhere

except on localized areas which are well captured and refined by the adaptive refinement scheme, as il-

lustrated in Fig. 7. The results in Fig. 7 also suggest that further enhancement of the present scheme could

be achieved based on generalizing the refinement strategy so that the local expansion order is also adapted

(reduced) during refinement. Excessive refinement in smooth regions observed with No ¼ 1 also indicates

that the threshold function may need to be related to the expansion order. Such generalizations will be
considered in future work.

In the numerical experiments below, the threshold parameter is decreased before the refinement is

stopped. Specifically, starting from e2ðVolmÞ ¼ C=
ffiffiffiffiffiffiffiffiffiffi
Volm
p

, with C ¼ 0:5, the adaptive refinement is carried

out until the criterion is satisfied over all subdomains. Then, the constant C is multiplied by a factor of 0.8,

and the analysis is repeated. We monitor the convergence of the solution by computing the errors in the

expectation and standard deviation of q at t ¼ 1, using the solution obtained at the end of the refinement

with No ¼ 3 as surrogate for the exact solution. In Fig. 8, we plot the absolute values of hqi � hqiex and of

rðqÞ � rexðqÞ as a function of the number of blocks Nb. These plots allow us to estimate how quickly the
solutions converge as the partition is refined. The results reveal that the errors decay as 	N�No�1

b for the

three tested cases. Note that if the partition were uniform, then the number of blocks needed to achieve a

similar level of accuracy would be much larger than that computed by the adaptive scheme. In particular, if
No = 1 No = 2 No = 3
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the MRA of Section 4 were to be applied without refinement at the highest refinement level reached in the

adaptive scheme, the computations would require excessive CPU and memory requirements and thus

would prove impractical. This highlights the efficiency of the adaptive computations.

Another assessment of the efficiency of the adaptive scheme is performed by estimating the CPU cost
needed to achieve a given level of accuracy. Since actual CPU cost is generally dependent on the computing

platform and implementation details, the analysis below are based on the CPU load; as in previous sections,

the latter is estimated as the product of C with the total number of blocks that are computed. This enables

us direct comparison with the MC approach, for which the CPU load is simply the number of realizations.

Fig. 9 shows the error in the mean and standard deviation of qðt ¼ 1Þ as a function of the CPU-load,

denoted CPU, of the spectral adaptive computations using No ¼ 1, 2 and 3. Also shown is the error in the

MC simulation, plotted against the sample size m. The results indicate that for the present setup the

adaptive computations result in very small error estimates. In contrast, the small convergence rate of MC
simulations limits the accuracy of the corresponding predictions. The figures show that in the intermediate

range of CPU, lower errors are achieved with lower expansion order; as the CPU increases, however,

accuracy improves with increasing expansion order. This trend supports earlier suggestion that a more

efficient approach may be constructed in which the expansion order is also adapted during refinement.

Additional insight into the behavior of the errors is gained by repeating the same experiment, using

second-, third-, and fourth-order expansion, and extending the simulation up to t ¼ 2. As shown in [22], as

time increases the solution develops sharper fronts, eventually becoming discontinuous at large time. Thus,

one would expect that the convergence of higher-order expansions deteriorates as t increases. This is in fact
observed in Fig. 10, where errors in hqi and rðqÞ at t ¼ 2 are plotted against CPU load. In particular, the

results show that in most of the CPU range considered, second-order predictions have smaller errors than

third- and fourth-order computations. Also note that regardless of the expansion order, the adaptive

computations clearly outperform MC simulations.

5.3.3. Higher-dimensional problems

We conclude this section by briefly demonstrating the application of the adaptive scheme to higher-

dimensional problem. Specifically, results are presented for the case of three random dimensions. The same
surface reaction model is used, but uncertainty in the reaction rate is now considered, with a assumed to be
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uniformly distributed in the range ½0:1; 2�. In Fig. 11, we plot the partition generated during refinement with

different threshold functions. The figure shows that the adaptive scheme can accommodate multiple di-

mensions, and illustrates how refinement is selectively applied along different directions in the space of

random data. Also plotted in Fig. 11 is the pdf of the edge-size of the subdomains along the different di-

mensions; the results are generated using the finest partition (C ¼ 10�3). The plot illustrates that more
refinement has been applied along the second direction (b) than along the first (initial condition, qðt ¼ 0Þ),
and that more refinement has been applied on the first direction than the third (a). This last result is not
surprising since the dependence of q on a, in the range considered, is everywhere smoother than along the

other two directions.



Fig. 11. Partitioning of 3D random parameter space using the adaptive scheme. The refinement threshold is indicated. Also shown in

the pdf of the edge-size of the subdomains along the three directions.
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6. Conclusions

A MRA is applied to an uncertainty propagation scheme based on a generalized PC representation. The

MRA is based on an orthogonal projection of uncertain data and solution variables onto a MW basis

consisting of piecewise-smooth polynomials. A Galerkin procedure is then used to determine equations of

motion for the MW expansion coefficients. Integration of the resulting coupled system yields the solution of

the stochastic problem.

The behavior of the MRA is first examined through computations of a stochastic Lorenz system. The
computations indicate that the MW expansion converges as one increases the number of resolution levels
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and/or the order of the expansion. Convergence is verified by comparing the results with MC predictions,

and the comparison indicates that MRA has faster convergence rate and is significantly more efficient than

either MC or LH sampling.
Analysis of the Lorenz system also indicates that overheads of the MRA rapidly increase as the pa-

rameters of MW expansion are refined. To address this potential limitation, two adaptive strategies are

presented. The first strategy is based on local refinement of the MW expansion. The refinement is based on

computing the ‘‘energy’’ content in the highest resolution levels, locally refining the expansion where this

measure exceeds a prescribed threshold. Implementation of this adaptive refinement strategy is illustrated

through computations of a stochastic Rayleigh–B�enard problem. The case of a stochastic Rayleigh number

is considered; the latter is taken to be uniformly distributed in a finite interval containing the critical value.

Simulations indicate that the adaptive scheme can effectively handle such complex situations, as the re-
finement is localized in the neighborhood of the bifurcation. In particular, the present experience suggests

that in situations requiring a high level of local refinement, lower-order adaptive expansions may be

preferable to higher-order ones, as they are likely to result in more efficient predictions. On the other hand,

the analysis also indicates that for problems with a large number of stochastic dimensions, the improve-

ments of the local refinement strategy may not be sufficient to overcome the added complexity of multi-

dimensional problems.

An alternative adaptive strategy is finally considered in order to overcome potential limitations in multi-

dimensional problems. This second approach is based on adaptive block-partioning scheme of the space of
random data. On each block, the solution is expanded in terms of a MW expansion consisting of smooth

global functions and 1D details. The blocks are refined by division along individual dimensions whenever

the contribution to the local variance of the corresponding 1D details exceeds a prescribed threshold. The

solution is then recomputed on the newly generated blocks. Implementation of the resulting adaptive

scheme is illustrated based on computations of a surface-kinetic problem having stochastic initial condi-

tions and rate constants. Analysis of the behavior of the scheme indicates that the refinement is naturally

concentrated in areas of steep variation of the solution with respect to the random data. The analysis also

indicates that errors decay rapidly as the number of blocks increases, and that the rate of decay increases
with increasing order. For the present setup, the computations indicate that when the desired level of

accuracy is not very large, lower-order expansions may prove more efficient than higher-order expansions.

The present experiences indicate that adaptive refinement provides an attractive means for tackling

complex, multidimensional stochastic problems. Specifically, it offers the possibility of constructing efficient

and robust schemes that are able to effectively tackle situations exhibiting steep or discontinuous depen-

dence on random data. The computations also highlight several areas where substantial enhancement may

be achieved. These include the development of more elaborate strategies in which the order of the ex-

pansion is increased or reduced simultaneously with ‘‘spatial’’ refinement, and the construction of more
efficient refinement criteria that reduces the overheads of the local analysis. These generalizations are the

focus of ongoing work.
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Appendix A. Construction of the wj functions

We describe the methodology for the construction of the polynomial functions wiðxÞ, i ¼ 0; . . . ; k � 1

satisfying Eqs. (10) and (11). To this end, the methodology proposed by Alpert [3] is briefly summarized in
this appendix. The starting point is two sets of polynomial functions piðxÞ, and ~qjðxÞ, defined for x 2 ½0; 1�:

piðxÞ ¼ xi for i ¼ 0; . . . ; k � 1;

~qiðxÞ ¼
piðxÞ if xP 1=2;
�piðxÞ if x < 1=2;

�
for i ¼ 0; . . . ; k � 1:

8<: ðA:1Þ
A.1. Step 1

In a first step, each function of the set fqiðxÞ; i ¼ 0; . . . ; k � 1g is orthogonalized with respect to all the

functions piðxÞ for i ¼ 0; . . . ; k � 1. This is equivalent to the determination of the set of coefficients aij such
that

qjðxÞ ¼ ~qjðxÞ þ
Xk�1
i¼0

aijpiðxÞ ðA:2Þ

solves

hqjðxÞpiðxÞi ¼ 0 for i; j ¼ 0; 1; . . . ; k � 1: ðA:3Þ

At the end of this step, the functions fqjðxÞ; j ¼ 0; . . . ; k � 1g have k vanishing moments (so satisfy Eq.

(11)), but are not orthogonal: hqiqji 6¼ 0 for i 6¼ j.

A.2. Step 2

The orthogonalization of the set of functions qiðxÞ is enforced through the following procedure (Gram–

Schmidt, see for instance [27]):

1. rk�1ðxÞ ¼ qk�1ðxÞ.
2. j ¼ k � 1

3. j j� 1.

4. Orthogonalization of qjðxÞ with respect to the set of functions frjþ1; . . . ; rk�1g. This is achieved by deter-
mining the coefficients bl so that

rjðxÞ ¼ qjðxÞ þ
Xk�1
l¼jþ1

blrlðxÞ ðA:4Þ

satisfies hrj; rli ¼ 0 for l ¼ jþ 1; . . . ; k � 1.
5. If j > 0 continue at 3, else terminate.

Since the polynomial functions rj, j ¼ 0; . . . ; k � 1 are simply linear combinations of the qlðxÞ functions,
they also have k vanishing moments but they are now mutually orthogonal.

A.3. Step 3

Finally, the desired functions wiðxÞ are obtained by normalizing the riðxÞ,
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Fig. 12. wi¼0;...;No
ðxÞ for expansion orders No ¼ 1, 2, 3 and 5.
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wiðxÞ ¼
riðxÞ
hri; rii

: ðA:5Þ

In this work, the computation of the wi functions makes use of Gauss–Legendre quadrature rules (see [1]),

allowing for an exact estimate of the inner products hf ; gi up to round-off errors which are negligible for

moderate k. In Fig. 12, the functions wj¼0;...;k�1ðxÞ are plotted for k ¼ 2, 3, 4 and 6. Note that for k ¼ 1 one

obtains the Haar mother wavelet.
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